A method for obtaining symmetrized representations of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ and the rotation group SO(4)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 72095
(http://iopscience.iop.org/0301-0015/7/17/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:54

Please note that terms and conditions apply.

A method for obtaining symmetrized representations of $\mathbf{S U}(\mathbf{2}) \times \mathbf{S U}(\mathbf{2})$ and the rotation group $\mathbf{S O}(4)$

Patricia Gard
Cavendish Laboratory, Madingley Road, Cambridge, UK

Received 17 June 1974

Abstract

A formula is obtained by which any symmetrized power of $\left[j_{1}, j_{2}\right]$ may be expressed in terms of symmetrized powers of representations belonging to lower j values. In particular formulae are obtained for $\left[\frac{1}{2}, J\right] \otimes(2)$ and $[1, J] \otimes(2)$. The method is generalized to cover groups of the form $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \ldots(r$ times $)$. This problem has application to the $L-S$ coupling shell model of nuclear physics.

1. Introduction

In a previous paper (Gard and Backhouse 1974, to be referred to as I) methods were obtained for symmetrizing the UIR's (unitary irreducible representations) of the group $\mathrm{SU}(2)$ or, equivalently, the three-dimensional rotation group $\mathrm{SO}(3)$. The method has now been extended to solve the problem of symmetrizing the UIR's of $\mathrm{SU}(2) \times \operatorname{SU}(2)$ or, equivalently, the four-dimensional rotation group $S O(4)$. The main application of this work is to the $L-S$ coupling shell model in nuclear physics. If the nuclear forces do not depend strongly on the spins, the total wavefunction may be written as the product of an orbital wavefunction and a function of the spin and charge variables. Due to the symmetry of the Hamiltonian in the real space variables, the orbital wavefunction will have a definite symmetry with respect to the interchange of nucleons. Hence, in order that the total wavefunction should be antisymmetric, the charge-spin function must have the conjugate symmetry. More details of this problem may be found in Hamermesh (1964) and Lomont (1957).

Denote the UIR's of $\operatorname{SU}(2)$ by $[j], j=\frac{1}{2}, 1, \ldots$. The inner Kronecker product of UIR's of $\operatorname{SU}(2)$ has the simple reduced form

$$
\begin{equation*}
\left[j_{1}\right]\left[j_{2}\right] \equiv \bigoplus_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}[j] \tag{1.1}
\end{equation*}
$$

This notation may be extended to write the UIR's of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ as

$$
\begin{equation*}
\left[j_{1}, j_{2}\right] \equiv\left[j_{1}\right] \times\left[j_{2}\right] \tag{1.2}
\end{equation*}
$$

Since the covering group of $\mathrm{SO}(4)$ is $\mathrm{SU}(2) \times \mathrm{SU}(2)$, the results found in this paper also apply to the UIR's of $\operatorname{SO}(4)$. The relationship between the parameters of $\mathrm{SO}(4)$ and $\mathrm{SU}(2) \times \mathrm{SU}(2)$ is to be found in Talman (1960).

Now consider the nth inner Kronecker power of $\left[j_{1}, j_{2}\right]$ which is denoted by $\left[j_{1}, j_{2}\right]^{n}$. The symmetric group, S_{n}, acts on the carrier space of this UR (unitary representation) by permuting the basis elements of the $\left[j_{1}, j_{2}\right]$'s. Under this action the space decomposes
into $(\mathrm{SU}(2) \times \mathrm{SU}(2)) \times \mathrm{S}_{n}$-invariant subspaces $\Omega^{\prime \prime}$, where $[\nu]$ is the UIR of S_{n} corresponding to the partition $(v)=\left(v_{1}, v_{2}, \ldots, v_{d}\right), v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{d}>0$. of the positive integer n. The space Ω^{v} carries the UR $d_{v}\left[j_{1}, j_{2}\right] \otimes(v)$, where $d_{v}=\operatorname{dim}[v]$, and hence there is a direct sum decomposition

$$
\begin{equation*}
\left[j_{1}, j_{2}\right]^{n} \equiv \bigoplus_{v} d_{v}\left[j_{1}, j_{2}\right] \otimes(v) . \tag{1.3}
\end{equation*}
$$

The UR $\left[j_{1}, j_{2}\right] \otimes(v)$ is called the symmetrized power of $\left[j_{1}, j_{2}\right]$ corresponding to the partition (v) of n. More details of this decomposition may be found in Boerner (1970).

The plan of the paper is as follows. In § 2 we derive the main result of this paper by which any symmetrized power of $\left[j_{1}, j_{2}\right]$ may be expressed in terms of symmetrized powers of representations belonging to lower j values (see theorems (2.2), (2.3)). In particular we obtain formulae for $\left[\frac{1}{2}, J\right] \otimes(2)$ and $[1, J] \otimes(2)$. In $\S 3$ we generalize the method to obtain a similar result for the UIR's of $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \ldots(r$ times $)$ (see theorem (3.1)). We also note a generalization of the theorem relating symmetrized representations of $\operatorname{SU}(2)$ given in I.

2. General formula for $\left[j_{1}, j_{2}\right] \otimes(v)$

Let $\chi\left(j_{1}, j_{2}\right)$ denote the character of $\left[j_{1}, j_{2}\right]$, then for a rotation $\left(\theta_{1}, \theta_{2}\right), \chi\left(j_{1}, j_{2}\right)$ takes the value

$$
\begin{equation*}
\left(\mathrm{e}^{1 / \theta_{1} \theta_{1}}+\mathrm{e}^{1\left(/ J_{1}-1\right) \theta_{1}}+\ldots+\mathrm{e}^{-\mathrm{i} j_{1} \theta_{1}}\right)\left(\mathrm{e}^{1 / 2 \theta_{2}}+\ldots+\mathrm{e}^{-\mathrm{i} j_{2} \theta_{2}}\right) \tag{2.1}
\end{equation*}
$$

But symmetrizing the character $\chi\left(j_{1}, j_{2}\right)$ of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ is equivalent to symmetrizing the representation

$$
\begin{equation*}
\left(\theta_{1}, \theta_{2}\right) \mapsto\left(\mathrm{e}^{\mathrm{i} / \theta_{1}} \oplus \mathrm{e}^{\mathrm{i}\left(J_{1}-1\right) \theta_{1}} \oplus \ldots \oplus \mathrm{e}^{-j_{1} \theta_{1}}\right)\left(\mathrm{e}^{\mathrm{i} j_{2} \theta_{2}} \oplus \ldots \oplus \mathrm{e}^{-\mathrm{i} j_{2} \theta_{2}}\right) \tag{2.2}
\end{equation*}
$$

of $\overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}$ (the double groups of $\mathrm{SO}(2)$). Having carried through the symmetrization, we revert to the idea of characters to obtain a reduction of the representation. As in I we need the following theorem:

Theorem (2.1). Let L and M be representations of the same group G. Let (v) be a partition of n and let $\left(\mu_{1}\right),\left(\mu_{2}\right)$ be partitions of n_{1}, n_{2} respectively, where $n=n_{1}+n_{2}$. Then

$$
(L \oplus M) \otimes(v) \equiv \bigoplus_{n_{1}, n_{2}, \mu_{1}, \mu_{2}} \sigma\left(v ; \mu_{1}, \mu_{2}\right)\left[L \otimes\left(\mu_{1}\right)\right]\left[M \otimes\left(\mu_{2}\right)\right]
$$

where the direct sum is taken over all partitions of n as $n=n_{1}+n_{2}$ and for each such partition $\sigma\left(v ; \mu_{1}, \mu_{2}\right)$ is the frequency of the representation $\left[\mu_{1}\right] \times\left[\mu_{2}\right]$ in $[v] \downarrow S_{n_{1}} \times S_{n_{2}}$.

Denote the linear characters of $\operatorname{SO}(2) \times \operatorname{SO}(2)$ by $\psi_{p} \phi_{q}$ so that

$$
\begin{equation*}
\psi_{p} \phi_{q}\left(\theta_{1}, \theta_{2}\right)=\mathrm{e}^{\mathrm{i} p \theta_{1}} \mathrm{e}^{\mathrm{i} q \theta_{2}} \tag{2.3}
\end{equation*}
$$

In order to find a step-up procedure for symmetrizing representations of $\mathrm{SU}(2) \times \mathrm{SU}(2)$, we apply theorem (2.1) to representations of $\overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}$, taking

$$
\begin{align*}
L & =\left(\psi_{J} \oplus \psi_{J-1} \oplus \ldots \oplus \psi_{j-p}\right) \times\left(\phi_{J} \oplus \phi_{J-1} \oplus \ldots \oplus \phi_{-J}\right) \\
& =\left[\psi_{j-p / 2}\left(\psi_{p / 2} \oplus \ldots \oplus \psi_{-p / 2}\right)\right] \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \tag{2.4}\\
M & =\left(\psi_{j-p-1} \oplus \ldots \oplus \psi_{-j}\right) \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \\
& =\left[\psi_{-\frac{1}{2}(p+1)}\left(\psi_{j-\frac{1}{2}(p+1)} \oplus \ldots \oplus \psi_{-J+\frac{1}{2}(p+1)}\right)\right] \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \tag{2.5}
\end{align*}
$$

where $p<j$. It follows that

$$
\begin{align*}
& L \otimes\left(\mu_{1}\right)=\left(\psi_{j-p / 2}\right)^{n_{1}}\left\{[p / 2, J] \otimes\left(\mu_{1}\right) \downarrow \overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}\right\} \tag{2.6}\\
& M \otimes\left(\mu_{2}\right)=\left(\psi_{-\frac{1}{2}(p+1)^{n_{2}}\left\{\left[j-\frac{1}{2}(p+1), J\right] \otimes\left(\mu_{2}\right) \downarrow \overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}\right\} .} .\right. \tag{2.7}
\end{align*}
$$

Hence

$$
\begin{align*}
{[j, J] \otimes(v) \downarrow } & \overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)} \\
\equiv & (L \oplus M) \otimes(v) \\
\equiv & \oplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) \psi_{j n_{1}-\frac{1}{2}\left(n_{2}+n p\right)\left\{\left[\frac{1}{2} p, J\right] \otimes\left(\mu_{1}\right)\right.} \\
& \left.\times\left[j-\frac{1}{2}(p+1), J\right] \otimes\left(\mu_{2}\right)\right\} \downarrow \mathrm{SO}(2) \times \overline{\mathrm{SO}(2)} . \tag{2.8}
\end{align*}
$$

As in I, the symmetry of the problem has been lost by our choice of L and M. If instead we take

$$
\begin{align*}
L & =\left(\psi_{-J+p} \oplus \ldots \oplus \psi_{-j}\right) \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \\
& =\left[\psi_{-J+p / 2}\left(\psi_{p / 2} \oplus \ldots \oplus \psi_{-p / 2}\right)\right] \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \tag{2.9}\\
M & =\left(\psi_{j} \oplus \ldots \oplus \psi_{-j+p+1}\right) \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \\
& =\left[\psi_{\frac{1}{2}(p+1)}\left(\psi_{j-\frac{1}{2}(p+1)} \oplus \ldots \oplus \psi_{-j+\frac{1}{2}(p+1)}\right)\right] \times\left(\phi_{J} \oplus \ldots \oplus \phi_{-J}\right) \tag{2.10}
\end{align*}
$$

we obtain the result

$$
\begin{align*}
& {[j, J] \otimes(v) \downarrow \overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}} \\
& \equiv \\
& \equiv \bigoplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) \psi_{-j n_{1}+\frac{1}{2}\left(n_{2}+n p\right)} \tag{2.11}\\
& \quad \times\left\{\left[\frac{1}{2} p, J\right] \otimes\left(\mu_{1}\right)\left[j-\frac{1}{2}(p+1), J\right] \otimes\left(\mu_{2}\right)\right\} \downarrow \overline{\mathrm{SO}(2)} \times \overline{\mathrm{SO}(2)}
\end{align*}
$$

Adding (2.8) and (2.11) we obtain a direct sum of terms of the form

$$
\begin{equation*}
\left[\left(\psi_{p} \oplus \psi_{-p}\right)\left(\psi_{j_{1}} \oplus \ldots \oplus \psi_{-j_{1}}\right)\right] \times\left(\phi_{J_{1}} \oplus \ldots \oplus \phi_{-J_{1}}\right) \tag{2.12}
\end{equation*}
$$

As in I we define an operator $T(p, q)$, where

$$
\begin{equation*}
T(p, q)=T(p, 0)+T(0, q) \tag{2.13}
\end{equation*}
$$

Each component acts just as for $\mathrm{SU}(2)$ so that

$$
\begin{align*}
& T(p, 0)[j, J]=[j+p, J] \oplus[j-p, J] \\
& T(0, q)[j, J]=[j, J+q] \oplus[j, J-q] \tag{2.14}
\end{align*}
$$

where

$$
\begin{align*}
& {[-j, J]=-[j-1, J]} \\
& {[j,-J]=-[j, J-1] .} \tag{2.15}
\end{align*}
$$

Hence we obtain the following result.

Theorem (2.2).
$2[j, J] \otimes(v) \equiv \oplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(-j n_{1}+\frac{1}{2}\left(n_{2}+n p\right), 0\right)$
where $T(0,0)$ is twice the identity operator.

If we had applied the same analysis to the set of elements $\left\{\phi_{q}\right\}$ we should have obtained the result:

Theorem (2.3).
$2[j, J] \otimes(v) \equiv \oplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(0,-J n_{1}+\frac{1}{2}\left(n_{2}+n p\right)\right)\left\{\left[j, \frac{1}{2} p\right] \otimes\left(\mu_{1}\right)\left[j, J-\frac{1}{2}(p+1)\right] \otimes\left(\mu_{2}\right)\right\}$.
These are very useful theorems since they lead to expressions for $[j, J] \otimes(v)$ in terms of representations of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ belonging to lower j, J values. Hence we can obtain any symmetrized representation by a step-up procedure. We note the following special cases of theorem (2.2).

Corollary (2.4).
(i) If $p=0$
$2[j, J] \otimes(v) \equiv \bigoplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(j n_{1}-\frac{1}{2} n_{2}, 0\right)\left\{[0, J] \otimes\left(\mu_{1}\right)\left[j-\frac{1}{2}, J\right] \otimes\left(\mu_{2}\right)\right\}$
(ii) If j is integral and $p=j-1$
$2[j, J] \otimes(v) \equiv \oplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(\frac{1}{2} j\left(n_{2}-n_{1}\right)-\frac{1}{2} n_{1}, 0\right)\left\{\left[\frac{1}{2}(j-1), J\right] \otimes\left(\mu_{1}\right)[j / 2, J] \otimes\left(\mu_{2}\right)\right\}$
(iii) If j is half-integral and $p=j-\frac{1}{2}$
$2[j, J] \otimes(v) \equiv \bigoplus \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(\frac{1}{2}\left(j+\frac{1}{2}\right)\left(n_{2}-n_{1}\right), 0\right)\left\{\left[\frac{1}{2}\left(j-\frac{1}{2}\right), J\right] \otimes\left(\mu_{1}\right)\left[\frac{1}{2}\left(j-\frac{1}{2}\right), J\right] \otimes\left(\mu_{2}\right)\right\}$.
Corollary (2.5).
$2[j, J] \otimes(n) \equiv \bigoplus_{n_{1}+n_{2}=n} T\left(-j n_{1}+\frac{1}{2}\left(n_{2}+n p\right), 0\right)\left\{\left[\frac{1}{2} p, J\right] \otimes\left(n_{1}\right)\left[j-\frac{1}{2}(p+1), J\right] \otimes\left(n_{2}\right)\right\}$.
As an example of theorem (2.2) we consider the case $J=j=\frac{1}{2}$, then

$$
2\left[\frac{1}{2}, \frac{1}{2}\right] \otimes(v) \equiv \oplus \sigma\left(v ; \mu, \mu^{\prime}\right) T\left(\frac{1}{2}\left(n_{2}-n_{1}\right), 0\right)\left\{\left[0, \frac{1}{2}\right] \otimes(\mu)\left[0, \frac{1}{2}\right] \otimes\left(\mu^{\prime}\right)\right\} .
$$

Since $\left[0, \frac{1}{2}\right]$ is a two-dimensional UIR, terms on the right-hand side will vanish if either (μ) or $\left(\mu^{\prime}\right)$ is a partition of n into more than two parts. Hence
$2\left[\frac{1}{2}, \frac{1}{2}\right] \otimes(\nu) \equiv \bigoplus \sigma\left(\nu ; \mu, \mu^{\prime}\right) T\left(\frac{1}{2}\left(n_{1}-n_{2}\right), 0\right)\left\{\left[0, \frac{1}{2}\left(\mu_{1}-\mu_{2}\right)\right]\left[0, \frac{1}{2}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\right]\right\}$.
An equivalent form of equation (2.16) has been obtained independently by N B Backhouse (Backhouse and Gard 1974). As an illustration we work out the known result for $\left[\frac{1}{2}, \frac{1}{2}\right] \otimes(n)$.

$$
\begin{aligned}
2\left[\frac{1}{2}, \frac{1}{2}\right] \otimes(n) & \equiv \bigoplus_{n_{1}+n_{2}=n} T\left(\frac{1}{2}\left(n_{1}-n_{2}\right), 0\right)\left\{\left[0, \frac{1}{2} n_{1}\right]\left[0, \frac{1}{2} n_{2}\right]\right\} \\
& \equiv \bigoplus\left[0, \frac{1}{2} n_{1}\right]\left[0, \frac{1}{2} n_{2}\right] T\left(\frac{1}{2}\left(n_{1}-n_{2}\right), 0\right)[0,0] \\
& \equiv \bigoplus_{0}\left\{\left[0, \frac{1}{2} n\right] \oplus \ldots \oplus\left[0, \frac{1}{2}\left(n_{1}-n_{2}\right)\right]\right\}\left\{\left[\frac{1}{2}\left(n_{1}-n_{2}\right), 0\right]-\left[\frac{1}{2}\left(n_{1}-n_{2}\right)-1,0\right]\right\} \\
& \equiv\left(\bigoplus_{n_{1}+n_{2}=n}\left[\frac{1}{2}\left(n_{1}-n_{2}\right), \frac{1}{2}\left(n_{1}-n_{2}\right)\right]\right)-\left[-\frac{1}{2} n-1, \frac{1}{2} n\right] .
\end{aligned}
$$

Hence

$$
\left[\frac{1}{2}, \frac{1}{2}\right] \otimes(n) \equiv\left[\frac{1}{2} n, \frac{1}{2} n\right] \oplus\left[\frac{1}{2} n-1, \frac{1}{2} n-1\right] \oplus \ldots \oplus\left\{\begin{array}{l}
{[0,0]} \tag{2.17}\\
{\left[\frac{1}{2}, \frac{1}{2}\right]}
\end{array}\right.
$$

the last term depending on whether n is even or odd. In the above analysis we used the result that

$$
\begin{equation*}
\left[j_{1}, J_{1}\right]\left\{T(p, 0)\left[j_{2}, J_{2}\right]\right\} \equiv T(p, 0)\left\{\left[j_{1}, J_{1}\right]\left[j_{2}, J_{2}\right]\right\} \tag{2.18}
\end{equation*}
$$

which is easily deducible.
As an example of corollary (2.5) we consider the case $n=2$, then
$2[j, J] \otimes(2) \equiv T(1,0)\left\{\left[j-\frac{1}{2}, J\right] \otimes(2)\right\} \oplus T(2 j, 0)\{[0, J] \otimes(2)\} \oplus T\left(j-\frac{1}{2}, 0\right)\left\{\left[j-\frac{1}{2}, J\right][0, J]\right\}$.
For the special case $j=\frac{1}{2}$ we have

$$
\begin{align*}
{\left[\frac{1}{2}, J\right] \otimes(2) } & \equiv[0, J][0, J] \oplus T(1,0)\{[0, J] \otimes(2)\} \\
& \equiv \bigoplus_{k=1, \frac{1}{2}}^{J}[0,2 k-1] \oplus \bigoplus_{k=0, \frac{1}{2}}^{J}[1,2 k] \tag{2.19}
\end{align*}
$$

where the lower limit corresponds to J being integer or half-integer respectively. Also we have
$2[1, J] \otimes(2) \equiv T(1,0)\left\{\left[\frac{1}{2}, J\right] \otimes(2)\right\} \oplus T(2,0)\{[0, J] \otimes(2)\} \oplus T\left(\frac{1}{2}, 0\right)\left\{\left[\frac{1}{2}, J\right][0, J]\right\}$.
Hence

$$
\begin{equation*}
[1, J] \otimes(2) \equiv \bigoplus_{k=0, \frac{1}{2}}^{J}[2,2 k] \oplus[0,2 k] \oplus \bigoplus_{k=1, \frac{1}{2}}^{J}[1,2 k-1] . \tag{2.20}
\end{equation*}
$$

Clearly it is quite easy to step up to the value of $[j, J] \otimes(2)$. For $n=3$ we have

$$
\begin{equation*}
\left[\frac{1}{2}, J\right] \otimes(3) \equiv T\left(\frac{3}{2}, 0\right)\{[0, J] \otimes(3)\} \oplus T\left(\frac{1}{2}, 0\right)\{[0, J] \otimes(2)[0, J]\} . \tag{2.21}
\end{equation*}
$$

This can be worked out using results (4.10) and (4.11) of I. It is also possible to find $\left[\frac{1}{2}, 1\right] \otimes(n)$ by using result (5.3) of I.

3. General formula for $\left[\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots, \boldsymbol{j}_{r}\right] \otimes(v)$

Having solved the problem of symmetrizing UIR's of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ it is now possible to find a method of symmetrizing UIR's of $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \ldots(r$ times $)$. The representations of this group are denoted by $\left[j_{1}, j_{2}, \ldots, j_{r}\right]$ and are equivalent to the outer direct product of r UIR's of SU(2). Proceeding exactly as in $\S 2$ we arrive at the following result :

Theorem (3.1).

$$
\begin{aligned}
& 2\left[j_{1}, j_{2}, \ldots, j_{r}\right] \otimes(v) \\
& \equiv \equiv \sigma\left(v ; \mu_{1}, \mu_{2}\right) T\left(-j_{1} n_{1}+\frac{1}{2}\left(n_{2}+n p\right), 0, \ldots, 0\right) \\
& \quad \times\left\{\left[\frac{1}{2} p, j_{2}, \ldots, j_{r}\right] \otimes\left(\mu_{1}\right)\left[j_{1}-\frac{1}{2}(p+1), j_{2}, \ldots, j_{r}\right] \otimes\left(\mu_{2}\right)\right\}
\end{aligned}
$$

where $T(0)$ is twice the identity operator.
In principle this result allows us to build up to any symmetrized power

$$
\left[j_{1}, j_{2}, \ldots, j_{r}\right] \otimes(v)
$$

We note the following result:

Corollary (3.2).
$2\left[j_{1}, j_{2}, \ldots, j_{r}\right] \otimes(n)$

$$
\begin{aligned}
\equiv & \oplus T\left(-j_{1} n_{1}+\frac{1}{2}\left(n_{2}+n p\right), 0, \ldots, 0\right)\left\{\left[\frac{1}{2} p, j_{2}, \ldots, j_{r}\right] \otimes\left(n_{1}\right)\right. \\
& \left.\times\left[j_{1}-\frac{1}{2}(p+1), j_{2}, \ldots, j_{r}\right] \otimes\left(n_{2}\right)\right\} .
\end{aligned}
$$

By analogy with theorems (2.2) and (2.3) we obtain ($r-1$) other results by applying the transposition ($1 k$), $2 \leqslant k \leqslant r$, to all r-tuples in the statement of the above two results. Note that the equivalent results for $\operatorname{SU}(2)$ itself are more general than those given in I.

Acknowledgments

I should like to thank Dr N B Backhouse for reading the manuscript and also New Hall, Cambridge for a Research Fellowship.

References

Backhouse N B and Gard P 1974 Proc. 3rd Int. Colloqu. on Group Theoretical Methods in Physics (Marseilles: CNRS) to be published
Boerner H 1970 Representation of Groups (Amsterdam: North-Holland)
Gard P and Backhouse N B 1974 J. Phys. A: Math., Nucl. Gen. 7 1793-803
Hamermesh M 1964 Group Theory (Reading, Mass.: Addison-Wesley)
Lomont J S 1959 Applications of Finite Groups (New York: Academic Press)
Talman J 1960 Special Functions: A Group Theoretic Approach (New York: Benjamin)

