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Received 17 June 1974 

Abstract. A formula is obtained by which any symmetrized power of [j, , j,] may be expressed 
in terms of symmetrized powers of representations belonging to lower j values. In particular 
formulae are obtained for [i, J ] @ ( 2 )  and [l, J ] @ ( 2 ) .  The method is generalized to cover 
groups of the form SU(2) x SU(2) x . . . ( r  times). This problem has application to the L-S 
coupling shell model of nuclear physics. 

1. Introduction 

In a previous paper (Gard and Backhouse 1974, to be referred to as I) methods were 
obtained for symmetrizing the UIR’S (unitary irreducible representations) of the group 
SU(2) or, equivalently, the three-dimensional rotation group SO(3). The method has 
now been extended to solve the problem of symmetrizing the UIR’S of SU(2) x SU(2) or, 
equivalently, the four-dimensional rotation group SO(4). The main application of this 
work is to the L-S coupling shell model in nuclear physics. If the nuclear forces do not 
depend strongly on the spins, the total wavefunction may be written as the product of an 
orbital wavefunction and a function of the spin and charge variables. Due to the 
symmetry of the Hamiltonian in the real space variables, the orbital wavefunction will 
have a definite symmetry with respect to the interchange of nucleons. Hence, in order 
that the total wavefunction should be antisymmetric, the charge-spin function must 
have the conjugate symmetry. More details of this problem may be found in Hamermesh 
(1964) and Lomont (1957). 

Denote the UIR’S of SU(2) by [j], j = i, 1,.  . . . The inner Kronecker product of 
UIR’S of SU(2) has the simple reduced form 

j1  + h  

j =  111 - j 2 l  

[ j l l [ ~ z l  = 0 [f. (1.1) 

This notation may be extended to write the UIR’S of SU(2) x SU(2) as 

Since the covering group of SO(4) is SU(2) x SU(2), the results found in this paper also 
apply to the UIR’S of SO(4). The relationship between the parameters of SO(4) and 
SU(2) x SU(2) is to be found in Talman (1960). 

Now consider the nth inner Kronecker power of [ j ,  ,j,] which is denoted by [ j ,  ,j2]”. 
The symmetric group, S,, acts on the carrier space of this UR (unitary representation) 
by permuting the basis elements of the [ j ,  ,j2]’s. Under this action the space decomposes 
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into (SU(2) x SU(2)) x S,-invariant subspaces Cl", where [v] is the UIR of S,, corresponding 
to the partition (v)  = ( \ I , ,  v,,. . . , t i d ) ,  11, 2 v, 2 . . . 2 \ i d  > 0. of the positive integer n. 
The space R" carries the UR d , [ j ,  , j , ] @ ( ~ ) ,  where d,  = dim[v], and hence there is a direct 
sum decomposition 

(1.3) 

The LTR [ j , , j , ]@(v )  is called the symmetrized power of [j, .j ,] corresponding to the 
partition (11) of n. More details of this decomposition may be found in Boerner (1970). 

The plan of the paper is as follows. In Q 2 we derive the main result of this paper by 
which any symmetrized power of [ j , , j , ]  may be expressed in terms of symmetrized 
powers of representations belonging to lower j values (see theorems (2.2), (2.3)). In 
particular we obtain formulae for [4,5]@(2) and [1,5]@(2). In $ 3  we generalize the 
method to obtain a similar result for the UIR'S of SU(2)xSU(2)x . . . ( r  times) (see 
theorem (3.1)). We also note a generalization of the theorem relating symmetrized 
representations of SU(2) given in I. 

[ j ,  ,j21fl = @ d , [ j ,  3j21@(\j). 
V 

2. General formula for [ j , ,  j,] 8 (v) 

Let ~ ( j ,  J,) denote the character of [ j ,  , j 2 ] ,  then for a rotation ( e , ,  U,), ~ ( j ,  J,) takes the 
value 

(2.1) + . . , + , - ~ ~ I Q I ) ( ~ I J ~ Q ~ +  , . , + , - i ~ 2 0 2 ) ,  ( e i ~ ~ Q ~ + e ~ ( ~ ~ - l ) Q ~  

But symmetrizing the character ~ ( j , ,  j,) of SU(2) x SU(2) is equivalent to symmetrizing 
the representation 

( e , , e , ) H ( e ~ J l ~ l ~ e ~ ( J 1 - ~ ) ~ ~ ~  . . .  @e-V1~1)(eij2@2@~~~ @e-iIzQ2) (2.2) 
-- 

of SO(2) x SO(2) (the double groups of SO(2)). Having carried through the symmetriza- 
tion, we revert to the idea of characters to obtain a reduction of the representation. As 
in I we need the following theorem: 

Theorem (2.1). Let Land M be representations of the same group G. Let (11) be a partition 
of n and let (pl) ,  (p,) be partitions of n , ,  n2 respectively, where n = n ,  +n,. Then 

(LOWO(4 = @ 4 1 ) ;  P l ,  ~ 2 ) [ ~ @ ( ~ 1 ) 1 [ M @ ( ~ , ) l  
E l  9E2.P I .P2 

where the direct sum is taken over all partitions of n as n = n ,  + n ,  and for each such 
partition o(v: p,  , p,) is the frequency of the representation [p, ]  x [p,] in [Y] 1 SnI x S n 2 .  

Denote the linear characters of SO(2) x SO(2) by $p4q so that 

$p4q(Ul, U,) = eipel eiqe2. (2.3) 
In order to find a step-up procedure for symmetrizing representations of SU(2) x SU(2), 
we apply theorem (2.1) to representations of SO(2) x S0(2), taking 

L = ($,e$,-,@... o$,-,)X(4Jo4J-lo. . .  04-J) 
= [$j-p,2(ip,2e . . . @$-p,2)l x (4Jo ' .  . 0 4 - J )  
= ($, - ,-I  e... o i  -, ) x ( + J o . . .  0 4 - J )  
= [$-+(p+l)($j-+(p+l)@ . * .  O$-,++,p+,,)lx(+J@ . . .  0 4 - J )  

(2.4) 

(2.5) 



Symmetrized representations of SU(2) x SU(2) and SO(4) 2097 

Adding (2.8) and (2.11) we obtain a direct sum of terms of the form 

[($polc/-p)($jlo~.~ @$-jJ I  x ($J ,O. .  . @ $ - J J .  

T(p,  4)  = T(p,  0)  + T(O, 4). 

As in I we define an operator T(p, 4) ,  where 

Each component acts just as for SU(2) so that 

T(p,  0) [ j ,  JI = [ j  + P, JI 0 [ j  - P 3  51 
T(O,4) [ j ,  JI = 13, J + 4 1 0  [ j ,  J - 41 

[-j,J] = -[j- l ,J]  

[ j ,  - J ]  = - [ j ,  J - 11. 

where 

Hence we obtain the following result. 

Theorem (2.2). 

2[j,JI@(v) = O a ( \ i ; ~ , , ~ ~ ) ~ ( - j n , + + ( n ~ + n p ) , ~ )  

where T(O.0) is twice the identity operator. 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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If we had applied the same analysis to the set of elements { c,bq} we should have obtained 
the result: 

Theorem (2.3). 

2[j,JI@(v) = @ a(v;pl,p2)T(O, - Jn l  ++tn2+np)){[j,3pl@(pl)[j, J - % P +  1)1@(~2)). 

These are very useful theorems since they lead to expressions for [ j ,  J]@(v) in terms 
of representations of SU(2) x SU(2) belonging to lower j ,  J values. Hence we can 
obtain any symmetrized representation by a step-up procedure. We note the following 
special cases of theorem (2.2). 

Corollary (2.5). 

2[j,J]@(n) = @ T(-jn,  + f ( n 2 + n p ) , 0 ) ( [ f p , J l @ ( n , ) [ j - 3 ( p +  1),J1@(n2)}. 
n l + n 2 = n  

As an example of theorem (2.2) we consider the case J = j = 3, then 

2[3,fI@(v) =@ a(v;p,~’)T(~(n,-n,),0){[0,31@(p)[0,)1@(p’)>. 
Since [0,3] is a two-dimensional UIR, terms on the right-hand side will vanish if either 
(p) or (p’) is a partition of n into more than two parts. Hence 

2[f,31@(v) = @ 4v~Cc>p‘)T(3(n, -n2),0){[013(P1 -P2)1[0&4 --P21). (2.16) 

An equivalent form ofequation (2.16) has been obtained independently by N B Backhouse 
(Backhouse and Gard 1974). As an illustration we work out the known result for 
[f , +I @(n). 

3 f l  O(n) = @ T(+tn, - n z ) , O )  {[O, in11 [O, 3.21) 

= @ LO, 3.11 [O, i n 2 1  T&n, - n2), 0) [O, 01 
= @ {[O, 3.10 . . . 0 [0,4(., - .,)I> {[%.I - n215 01 - 

@ [f(n,-n,),f(n,-n,,l 

nl + n Z = n  

- n2) - 1901) 

n, + f l * = f l  

Hence 

@ r0’ [3 3 O1 31 
[ f , 3 ]@(n)  = [;n,fn]@[fn-l,;n-l]@. . .  (2.17) 
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the last term depending on whether n is even or odd. In the above analysis we used the 
result that 

[j,,J,lIT(P,O)[j,,J,l} = ~ ~ P ~ ~ ~ ~ ~ ~ , ~ J , l ~ ~ , ~ J , l ~  (2.18) 

which is easily deducible. 
As an example of corollary (2.5) we consider the case n = 2, then 

2[j, J] O(2) = T(l,O){ [ j  - f , JI O M }  0 T(2j, 0) { [O, JI O(2)) 0 T ( j  - f , O )  { [ j  - f 3 31 [O, JI). 

For the special case j = f we have 

(2.19) 

where the lower limit corresponds to J being integer or half-integer respectively. Also 
we have 

2[ 1,JI  O(2) = T( 1,O) { [i, JI O(2)) 0 T(2,O) { [O, JI O(2)) 0 T(i,O) { [i, 53 LO, 513. 
Hence 

J J 

[l,J]O(2) = 0 [2,2k]0[0,2k]@ 0 [1,2k-11. (2.20) 
k = O , +  k =  1,f 

Clearly it is quite easy to step up to the value of [ j ,  JIO(2). For n = 3 we have 

[f , J ]  O(3) = T(;, 0) { [O, JI 0 (3)} 0 T(f,O) { [0, J] O(2) [O, J] }. (2.21) 

This can be worked out using results (4.10) and (4.11) of I. I t  is also possible to find 
[i, 1]@(n) by using result (5.3) of I. 

3. General formula for [ j , ,  j 2 ,  . . . ,j,] @ (v) 

Having solved the problem of symmetrizing UIR’S of SU(2) x SU(2) it is now possible to 
find a method of symmetrizing UIR’S of SU(2) x SU(2) x . . . ( r  times). The representations 
of this group are denoted by [ j ,  ,j,, . . . ,j,] and are equivalent to the outer direct product 
of r UIR’S of SU(2). Proceeding exactly as in 8 2 we arrive at the following result : 

In principle this result allows us to build up to any symmetrized power 

[ j ,  , J z , .  . . ,jrlO(v). 
We note the following result : 
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Corollary (3.2). 

2[j, J 2  3 . .  ' J,l@(4 
= @ T ( - j , n , + 9 ( n 2 + n p ) , 0 , .  . . , O ) ( [ f p , j , , .  . . , j , l@(nJ 

x [ j ,  - g p +  1 ) , j 2 , .  . . Jr1@(n2)) .  

By analogy with theorems (2.2) and (2.3) we obtain ( r  - 1) other results by applying the 
transposition (Ik), 2 < k < r ,  to all r-tuples in the statement of the above two results. 
Note that the equivalent results for SU(2) itself are more general than those given in I .  

Acknowledgments 

I should like to thank Dr N B Backhouse for reading the manuscript and also New Hall, 
Cambridge for a Research Fellowship. 

References 

Backhouse N B and Gard P 1974 Proc. 3rd I n t .  Colloqu. on Group Theoretical Methodr in Physics (Marseilles: 

Boerner H 1970 Representation of Groups (Amsterdam: North-Holland) 
Gard P and Backhouse N B 1974 J. Phys. A: Math., Nucl. Gen. 7 1793-803 
Hamermesh M 1964 Group Theory (Reading, Mass. : Addison-Wesley) 
Lomont J S 1959 Applications ofFinite Groups (New York: Academic Press) 
Talman J 1960 Special Funcfions: A Group Theoretic Approach (New York : Benjamin) 

CNRS) to be published 


